| Study | Study
design | Study
duration | Duration and frequency of group medical visits | No. of patients | Study population | % male | Outcomes measured | HbA _{1c} outcome | BP outcome | |---|-----------------|-------------------|--|-----------------------------------|--|--|---|--|---| | Clancy et al., 2003 ^{15–17} | RCT | 6 mo | 2-h sessions; monthly
over 6 mo | Intervention: 59
Control: 61 | Age > 18 yr; type 2
diabetes with HbA,
> 8.5% at most recent
evaluation | 21.7 | Trust in physician (scale),
ADA process-of-care
indicators, patient care
assessment tool, HbA ₁₋ ,
lipid profiles | At 6 mo: 9.513% in
intervention and
9.714% in control;
difference not
significant | Not measured | | Clancy et
al., 2007 ^{18,19}
and 2008 ²⁰ | RCT | 12 mo | 2-h sessions; monthly
over 12 mo | Intervention: 96
Control: 90 | Age > 18 yr; poorly
controlled type 2
diabetes (HbA,
> 8%) | 28 | Emergency department visits, inpatient stays, primary and specialty outpatient visits, total charges, HBA, testing, lipid profiles, adherence to ADA guidelines, cancer screens | Not measured;
instead study
looked at no. of
patients who
received HbA,
testing | Not measured | | Cohen et
al., 2011 ²¹ | RCT | 6 mo | 2-h sessions over 6 mo;
weekly for 4 wk, then
monthly for 5 mo | Intervention: 50
Control: 49 | Veterans with type 2
diabetes; HbA ₁ ,
> 7.0%,
LDL cholesterol > 100
mg/dL (or > 70 mg/dL
if coronary artery
disease present); BP
> 130/80 mm Hg | Intervention:
100
Control: 96 | HbA,, LDL cholesterol, BP, goal attainment of these values, diabetes self-care behaviour, prescribing (medications) between groups, no. of visits with primary care provider | Target goals reached by 40.5% in intervention v. 20.4% in control $(p = 0.03)$; patients in intervention group had higher odds of attaining HbA _{1c} goals | Target systolic BP (< 130 mm Hg) reached by 50% in intervention and 32.7% in control (p = 0.015); patients in intervention group had higher odds of attaining systolic BP goals | | Edelman et
al., 2010 ²² | RCT | 12.8 mo | 90–120 min per
session; every 2 mo
over 12 mo; total 7
sessions | Intervention: 133
Control: 106 | Veterans with poorly controlled diabetes (HbA ₁ , ≥ 7.5%) and hypertension (systolic BP > 140 mm Hg, diastolic BP > 90 mm Hg); type of diabetes not specified | Intervention:
95.5
Control: 96.2 | Systolic and diastolic BP,
HbA,, self-reported
medication adherence | Mean decrease 0.8% in intervention and 0.5% in control; difference not significant (p = 0.159) | Mean decrease in systolic BP was 13.7 mm Hg in intervention v. 6.4 mm Hg in control (p = 0.011) | | Naik et al.,
2011 ²³ | RCT | 12 mo | 60-min sessions;
4 sessions; every 3 wk
over 3 mo | Intervention: 45
Control: 42 | Veterans aged 50–90
yr with a primary
care provider; type 2
diabetes; mean
HbA ₁ , 7.5% 6 mo
before study | Unknown | HbA ₁ , diabetes self-
efficacy scale, diabetes
specific knowledge and
understanding scale | At 1 yr: $8.05\% \pm 1.40\%$ in intervention v. $8.64\% \pm 1.39\%$ in control ($p = 0.05$) | Not measured | | Study | Study
design | Study
duration | Duration and
frequency of group
medical visits | No. of patients | Study population | % male | Outcomes measured | HbA_{lc} outcome | BP outcome | |---------------------------------------|---------------------|-------------------|--|--|---|--|---|---|---| | Rygg et al.,
2012 ²⁴ | RCT | 12 mo | 5-h sessions; every
2 wk over 6 wk, or
every 3 wk over
9 wk, depending on
site | Intervention: 73
Control: 73 | Age > 18 yr; type
2 diabetes;
consultation with
general
practitioner in
past 3 yr | "Approxi-
mately 50%" | HbA _{1,r} patient activation, diabetes knowledge, BP, weight, BMI, total and HDL cholesterol, triglycerides, creatinine, oral glucose-lowering medication, visits with health care personnel in past 3 mo, satisfaction with diabetes treatment, problem areas in diabetes, EQ-VAS, SF-36 (physical and mental health domains), selfmanagement (diet, foot care and blood glucose) | (p = 0.432), except in | intervention: 82.6 (10.3), | | Sadur et
al., 1999 ²⁵ | RCT | 12 mo | 2-h sessions;
monthly over 6 mo | Intervention: 82
Control: 74 | Age 16–75 yr;
type 1 and 2
diabetes; HbA ₁ ,
> 8.5%, or no
HbA ₂ , test
performed in
previous yr | Intervention:
58.8
Control: 55.7 | HbA,, self-reported
changes in self-care
practices, self-efficacy,
satisfaction, utilization
of inpatient and
outpatient health care | ≥ 5 mo after randomization: 8.18% in intervention and 9.33% in control (p < 0.0001) | Not measured | | Schillinger
et al., 2009⁵⁵ | 3-arm
RCT | 12 mo | 90-min sessions;
monthly over 9 mo | Intervention: 104 Control (usual care): 108 3rd arm (wkly automated telephone support with nurse follow-up): 112 | Adult patients with type 2 diabetes; uninsured with high school education or less; ≥ 1 primary care visit in past yr; recent HbA,, ≥ 8.0% | Intervention:
36.3
Control: 44.7 | 1-yr changes in structure (patient assessment of chronic Illness care), communication processes (interpersonal processes of care) and outcomes (behavioural, functional and metabolic) | No difference
between groups
(9.0% \pm 2.0% in
both groups; $p =$ 0.3) | Systolic BP 138.9 \pm 20.3 mm Hg in intervention and 141.5 \pm 23.9 mm Hg in usual-care group (ρ = 0.1); diastolic BP 75.5 \pm 11.3 mm Hg in intervention and 78.5 \pm 18.5 mm Hg in usual-care group (ρ = 0.08) | | Taveira et
al., 2010 ²⁷ | RCT:
feasibility | 4 mo | 2-h sessions; weekly
over 4 wk | Intervention: 58
Control: 51 | Veterans aged
≥ 18 yr with type
2 diabetes; HbA ₁ ,
7%–9% in
previous 6 mo | Intervention:
91.4
Control: 100 | HbA _{1,7} BP (systolic < 130 mm Hg, diastolic < 80 mm Hg), lipids, tobacco use | Target reached by 40.4% in intervention and 21.6% in control; absolute mean change -0.9 ± 1.6 in intervention and 0.0 ± -1.5 in control | Target systolic BP reached by 65.5% in intervention and 39.9% in control; absolute mean change -7.3 ± 20.3 mm Hg in intervention and -1.7 ± -19.6 mm Hg in control. Target diastolic BP reached by 65.5% in intervention and 68.6% in control; absolute mean change -6.5 ± 10.0 mm Hg in intervention and 1.0 ± 10.8 mm Hg in control | | Study | Study
design | Study
duration | Duration and
frequency of group
medical visits | No. of patients | Study population | % male | Outcomes measured | HbA _{1c} outcome | BP outcome | |--|-----------------|-------------------|---|--|--|--|--|--|--| | Taveira et
al., 2011 ²⁸ | RCT | 6 mo | 90-min sessions;
weekly for 4 wk,
then monthly for
5 mo | Intervention: 44
Control: 44 | Veterans with
depression and
type 1 or 2
diabetes; HbA ₁ ,
> 6.5% in
previous 6 mo | Intervention:
100
Control: 95.5 | HbA _{1,} < 7% at 6 mo,
adherence to ADA
guidelines (systolic BP
< 130 mm Hg, diastolic
BP < 80 mm Hg), total,
LDL and HDL
cholesterol, tobacco
cessation, change in 10-
yr coronary event risk at
6 mo, depression
symptoms | 7.4% \pm 1.2% in intervention v. 8.4% \pm 2.0% in control group (p < 0.05) | Systolic BP 123.4 \pm 12.3 mm Hg in intervention and 127.0 \pm 17.3 mm Hg in control (p < 0.05 from baseline) | | Trento et al., 2002, ²⁹ 2001 ³⁰ and 2004 ³¹ | RCT | 4 yr | Duration of session
not stated; session
every 3 mo | Intervention: 56
Control: 56
(42 in each
group at yr 5) | Type 2 diabetes,
treated with diet
alone or diet and
oral hypoglycemic
agents; attended
diabetes clinic | Intervention:
51.1
Control: 60.7 | Weight, fasting blood glucose level, HbA ₁ ,, serum creatine, total and HDL cholesterol, triglycerides, microalbumine: creatinine ratio, diabetesrelated quality of life, knowledge of diabetes, health behaviours, BP, BMI | At 5 yr after randomization: 7.3% \pm 1.0% in intervention and 9.0% \pm 1.6% in control (p < 0.001) | Not measured | | Trento et
al., 2005 ³² | RCT | 3 yr | Duration of session
unclear; every 2–3
mo; total
15 sessions over 36
mo | Intervention: 30
Control: 28 | Age < 70 yr; type
1 diabetes with
onset before 30
yr; insulin started
within 1 yr of
diagnosis; ≥ 1 yr
previous
attendance in
clinic | Intervention:
61.3
Control: 58.1 | Diabetes-related quality of life, knowledge of type 1 diabetes, health behaviours, HbA,, total and HDL cholesterol, microalbumine: creatinine ratio, complications (hypoglycemic episodes [retrospective]), economic analysis | At 3 yr: 7.88%
\pm 0.20% in
intervention and
$8.79\% \pm 1.38\%$ in
control ($p = NS$) | Not measured | | Wagner et
al., 2001 ³³ | RCT | 2 yr | Half-day sessions;
"periodic"
(intervals of 3 mo
and 6 mo) | Intervention: 278
Control: 429 | Age > 30 yr;
patients with
diabetes (type
not specified)
using insulin or
oral hypoglycemic
therapy were
"preferentially
selected" | Intervention:
56
Control: 51.8 | Subscales of SF-36
(general health, physical
function, emotional role
function, social function
and pain), bed disability,
restricted-activity days | At 24 mo: no difference between groups (7.9% in both groups; $p = 0.9$) | Not measured | | Study | Study
design | Study
duration | Duration and
frequency of group
medical visits | No. of patients | Study population | % male | Outcomes measured | HbA _{1c} outcome | BP outcome | |--|--|-------------------|---|--|--|------------|---|--|---| | Benedetti
et al., 2004 ³⁴ | Cohort | 6 mo | 2-h sessions;
frequency unclear | Intervention: 698
Usual care: 1300 | Age > 18 yr; type 2
diabetes for ≥ 1 yr | Not stated | Annual HbA ₁ , test,
HbA ₁ , < 8.0%,
HbA ₁ , < 9.5%, annual LDL
cholesterol test, LDL
< 130, annual urine
protein test, eye and foot
exams; BP < 130/85
mm Hg, BP < 140/90 mm
Hg, patients > 40 yr
taking ASA, self-
management goal | in intervention
group than in | BP < 140/90 mm Hg
"approached significance"
(p < 0.06); BP < 130/85
significant (p < 0.05) | | Boegner
et al., 2008 ³⁵ | Cohort | 6 mo | Half-day sessions;
mean 3 sessions per
practice | 427 | Age > 18 yr; type 2
diabetes > 1 yr | 55.3 | Self-reported diabetes knowledge and behaviour; weight, BP, HbA,, fasting glycemia, % sedentary, dietary compliance, % using insulin, smoking status, antihypertensive treatment, lipid-lowering therapy, medication (tablets/d) | 7.57% ± 1.33% at baseline; 7.41% ± 1.26% after intervention (p < 0.01) | BP "remained stable and
approached the French
recommendations" | | Bray et al.,
2005 ³⁶ | Feasibility
study;
convenience
sample | 12 mo | 2-h sessions
over 6 mo; total
4 sessions | Intervention: 112
Control: 48 | Type 2 diabetes + ≥ 1
of: HbA ₁ , > 7.0%, BP
> 135/85 mm Hg or
high risk of end-
stage organ disease
(including
retinopathy,
neuropathy,
nephropathy) | 43 | Health care provider productivity, billable encounters, documented self-management goals, documented lipid profile, documented ASA use, documented foot exam, average daily encounter rate | 8.2% ± 2.6% at baseline; 7.1% ± 2.3% after intervention (p < 0.05 for difference between groups) | Not measured | | Culhane-
Pera et al.,
2005 ³⁷ | Cohort | 13 mo | 3.5-h sessions;
monthly for 3 mo,
then quarterly;
total 7 sessions | Intervention: 39
Refusers: 22
Nonparticipants
= 216 | Hmong adults with type 2 diabetes | 56 | HBA _{1.7} BMI, BP, LDL
cholesterol,
microalbumin:creatinine
ratio, self-reported 24-h
diet recall and exercise,
mental health, foot
exams, eye referrals, flu
shots and medication
intensification | 9.46% before and 9.58% after intervention; difference not significant (p = NS) | No significant difference in
systolic BP (132.67 mm Hg
before and 127.56 after
intervention) or in diastolic
BP (78.06 mm Hg before
and 78.64 mm Hg after
intervention) | | Study | Study
design | Study
duration | Duration and
frequency of group
medical visits | No. of patients | Study population | % male | Outcomes measured | HbA _{1c} outcome | BP outcome | |--|---|--|--|---|--|------------|---|--|---| | Desouza et
al., 2010 ³⁸ | Retrospective
chart review | 2 yr | 90-min session
every 3 mo; mean
4 per yr | 56 | Patients discharged
from diabetes clinic;
type of diabetes not
stated; HbA,, < 7% at
time of discharge,
with outcome data
available every 6 mo
for 2 yr | Not stated | HbA ₁ ,, LDL cholesterol,
BP | Change from baseline not significant $(p = 0.18)$ | Change in systolic BP from baseline: $0.06 \text{ v. } 0.05$ mm Hg ($p = 0.93$); change in diastolic BP from baseilne $-001 \text{ v. } 0$ mm Hg ($p = 0.34$) | | Dickman et
al., 2012 ³⁹ | Before—
after quasi-
experimental
design | 4 mo | 90-min sessions
over 4 mo;
frequency not
specified | 37; divided
into language
groups
(English: 11;
Spanish: 15;
bilingual: 11) | Age ≥ 18 yr;
uninsured patients
with income < 200%
below federal poverty
level; diagnosis of
non-insulin-
dependent type 2
diabetes or
hypertension, or both;
HbA ₁ , < 9%; BP
< 160/90 mm Hg;
"could benefit from
enhanced lifestyle
education, self-
management support
and medication
adherence support" | 34 | Patient and staff satisfaction, self-management of exercise (min/wk), identification and achievement of measurable goal | 7.25% at baseline,
7.0% after
intervention; 89%
had improved
outcomes | Systolic BP 174 mm Hg at
baseline and 144 mm Hg
after intervention; 100%
of patients had improved
outcomes | | Dontje et
al., 2011 ⁴⁰ | Cohort | 33 mo | 90-min sessions;
frequency unclear
(possibly monthly);
patients partici-
pated in 1–27
sessions | 51; divided into 2 groups according to no. of visits attended (1–2 or ≥ 3) | Adult patients with type 1 ($n = 4$) and type 2 diabetes; HbA _{1c} \geq 8% | 35 | Improved documentation of guideline-concordant care for patients with diabetes, enhance self-management, facilitate communication regarding chronic care management | Improvements in both groups | Improvements in both groups | | Gutierrez
et al.,
2011 ⁴¹ | Exploratory
and
descriptive | 17 mo
(mean
follow-up
9.5 mo) | Duration of session
not specified;
sessions conducted
every 2 wk;
total 36 | Intervention: 50
Usual care: 53 | Age ≥ 18 yr; Hispanic patients with poorly controlled type 2 diabetes (HbA ₁ , ≥ 7%) | Unknown | HbA,, quality of life, diabetes knowledge, immunizations, ASA use, foot and ophthalmology exams, microalbumin: creatinine ratio, lipid measurement, LDL cholesterol | Mean decrease 1.19% in intervention ($p < 0.01$) and 0.67% in control ($p = 0.02$) | Not measured | | Study | Study
design | Study
duration | Duration and
frequency of group
medical visits | No. of patients | Study population | % male | Outcomes measured | HbA _{1c} outcome | BP outcome | |--|--|-------------------|---|------------------------------------|--|---|--|--|---| | Kirsh et al.,
2007⁵ | Quasi-
experimental
with
concurrent
non-
randomized
controls | Unclear | 60–120 min per
session; frequency
not specified;
patients partici-
pated in 1–7
sessions | Intervention: 44
Usual care: 35 | Veterans with type 2
diabetes + ≥ 1 of:
HbA _{1,} > 9%, systolic
BP > 160 mm Hg and
LDL cholesterol
> 130 mg/dL | 97.7 | Systolic BP, HbA _{1,r} , LDL cholesterol, ASA use | Mean decrease
after intervention
1.4% (95% CI
0.8%–2.1%)
(p < 0.001) | Mean decrease in systolic
BP 16.0 mm Hg (95% CI
9.7–22.3) (ρ < 0.001) | | Loney-
Hutchinson
et al., 2009 ⁴² | Unclear | 18 mo | 60-min sessions;
monthly since July
2007 | 66 | HbA ₁ , persistently > 10%; type of diabetes not specified; not receiving care in diabetes clinic for ≥ 1 yr | Unknown | BP, HbA _{1e} , LDL
cholesterol | Mean decrease
from 12.1% to
8.3% at 12 mo | % who achieved BP
control increased from
15% at baseline to 38% | | Mallow et
al., 2011 ⁴³ | Retrospective | 27 mo | Not specified | Intervention: 53
Usual care: 58 | Age > 18 yr;
uninsured patients
with diabetes (type
not specified)
receiving care at a
free clinic | 26.1 | Depression score, weight,
BMI, HbA _{1,r} , blood
glucose, creatinine,
microalbumin, systolic
BP, diastolic BP, total,
HDL and LDL cholesterol,
triglycerides | No significant
change | Mean systolic BP 126.83 \pm 18.31 mm Hg after intervention; mean decrease 5.49 (95% CI 0.443–10.539) mm Hg ($p = 0.03$) | | Pieber et
al., 1995 ⁴⁴ | Cohort | 6 mo | 90–120 min per
session; every wk
over 4 wk | Intervention: 53
Usual care: 55 | Non-insulin
dependent, type 2
diabetes | Intervention: 42
Control: 47 | Weight, BMI, HbA,,,
serum cholesterol, serum
triglycerides, systolic BP,
diastolic BP, self-
monitoring glycosuria,
footcare practices,
diabetes-related
knowledge, medication
intensity | Decreased from
8.57% to 8.11%
(p < 0.05) | At 6 mo: systolic BP 144
± 21 mm Hg in
ntervention v. 150 ± 24
mm Hg in control
(p = 0.05) | | Raballo et
al., 2012 ⁶⁵ | Propositional
analysis: RCT
cohort | 2 yr | 40–50 min per
session; every 2–3
mo (type 1
diabetes) or 3–4 mo
(type 2 diabetes)
over 2 yr (program
could be repeated
ad libitum) | Intervention: 120
Control: 121 | Type 1 or type 2
diabetes | Type 2 diabetes:
Intervention: 36
Control: 51 | Patient perceptions of group care v. usual care, patient locus of control, range of concepts regarding diabetes, patient attitudes to group care | No significant difference among patients with type 2 diabetes (7.6% ± 1.0% in intervention and 8.0% ± 1.6% in control) | Not measured | Continued ## References* - 5. Kirsh S, Watts S, Pascuzzi K, et al. Shared medical appointments based on the chronic care model: a quality improvement project to address the challenges of partients with diabetes with high cardiovascular risk. Qual Saf Health Care 2007;16:349-53. - 15. Clancy DE, Brown S, Magruder K, et al. Group visits in medically and economically disadvantaged patients with type 2 diabetes and their relationships to clinical outcomes. Top Health Inf Manage 2003;24:8-14. - 16. Clancy DE, Cope D, Magruder K, et al. Evaluating group visits in an uninsured or inadequatly insured patient population with uncontrolled type 2 diabetes. Diabetes Educ 2003;29:292-302. - 17. Clancy DE, Cope D, Magruder K, et al. Evaluating concordance to American Diabetes Association standards of care for type 2 diabetes through group visits in an uninsured or inadequately insured patient population. Diabetes Care 2003;26:2032-6. - 18. Clancy DE, Yeager D, Huang P, et al. Further evaluating the acceptability of group visits in an uninsured or inadequately insured patient population with uncontrolled type 2 diabetes. Diabetes Educ 2007;33:309-14. - 19. Clancy DE, Huang P, Okonofua E, et al. Group visits: promoting adherence to diabetes guidelines. J Gen Intern Med 2007;22:620-4. - 20. Clancy DE, Dismuke C, Magruder K, et al. Do diabetes group visits lead to lower medical care charges? Am J Manag Care 2008;14:39-44. - 21. Cohen LB, Taveira T, Khatana S, et al. Pharmacist-led shared medical appointments for multiple cardiovascular risk reduction in patients with type 2 diabetes. Diabetes Educ 2011;37:801-12. - 22. Edelman D, Fredrickson S, Melnyk S, et al. Medical clinics versus usual care for patients with both diabetes and hypertension: a randomized trial. Ann Intern Med 2010;152:689-96. - 23. Naik AD, Palmer N, Petersen N, et al. Comparative effectiveness of goal setting in diabetes mellitus group clinics: randomized clinical trial. Arch Intern Med 2011;171:453-9. - 24. Rygg LØ, Rise M, Gronning K, et al. Efficacy of ongoing group based diabetes self-management education for patients with type 2 diabetes mellitus. A randomized control trial. Patient Educ Couns 2012;86:98-105. - 25. Sadur CN, Moline N, Costa M, et al. Diabetes management in a health maintenance organization. Efficacy of care management using cluster visits. Diabetes Care 1999;22:2011-7. - 26. Schillinger D, Handley M, Wang F, et al. Effects of self-management support on structure, process and outcomes among vulnerable patients with diabetes: a three-arm practical clinical trial. Diabetes Care 2009;32:559-66. - 27. Taveira TH, Friedmann P, Cohen, et al. Pharmacist-led group medical appointment model in type 2 diabetes. Diabetes Educ 2010;36:109-17. - 28. Taveira TH, Dooley A, Cohen L, et al. Pharmacist-led group medical appointments for the management of type 2 diabetes with comorbid depression in older adults. Ann Pharmacother 2011;45:1346-55. - 29. Trento M, Passera P, Baiardi M, et al. Lifestyle intervention by group care prevents deterioration of type II diabetes: a 4-year randomized controlled clinical trial. Diabetologia 2002;45:1231-9. - 30. Trento M, Passera P, Tomalino M, et al. Group visits improve metabolic control in type 2 diabetes: a 2-year follow-up. Diabetes Care 2001;24:995-1000. - 31. Trento M, Passera P, Borgo E, et al. A 5-year randomized controlled study of learning, problem solving ability, and quality of life modifications in people with type 2 diabetes managed by group care. Diabetes Care 2004;27:670-5. - 32. Trento M, Passera P, Borgo E, et al. A 3-year prospective randomized controlled clinical trial of group care in type 1 diabetes. Nutr Metab Cardiovasc Dis 2005;15:293-301. - 33. Wagner EH, Grothaus L, Sandhu N, et al. Chronic care clinics for diabetes in primary care: a system-wide randomized trial. Diabetes Care 2001;24:695-700. - 34. Benedetti R, Flock B, Pedersen S, et al. Improved clinical outcomes for fee-for-service physician practices participating in diabetes care collaborative. Jt Comm J Qual Saf 2004;30:187-94. - 35. Boegner C, Fontbonne A, Gras Vidal MF, et al. Evaluation of a structured educational programme for type 2 diabetes patients seen in private practice. Diabetes Metab 2008;34:243-9. - 36. Bray P, Thompson D, Wynn J, et al. Confronting disparities in diabetes care: the clinical effectiveness of redesigning care management for minority patients in rural primary care practices. J Rural Health 2005;21:317-21. - 37. Culhane-Pera K, Peterson K, Crain A, et al. Group visits for Hmong adults with type 2 diabetes mellitus: a pre-post analysis. J Health Care Poor Underserved 2005;16:315-27. - 38. Desouza CV, Rentschler L, Haynatzki G. The effect of group clinics in the control of diabetes. Prim Care Diabetes 2010;4:251-4. - 39. Dickman K, Pintz C, Gold K, et al. Behavior changes in patients with diabetes and hypertension after experiencing shared medical appointments. J Am Acad Nurse Pract 2012;24:43-51. - 40. Dontje K, Forrest K. Implementing group visits: Are they effective to improve diabetes self-management outcomes? J Nurse Pract 2011;7:571-7. - 41. Gutierrez N, Gimple N, Dallo F, et al. Shared medical appointments in a residency clinic: an exploratory study among Hispanics with diabetes. Am J Manag Care 2011;17:e212-4. - 42. Loney-Hutchinson LM, Provilus AD, Jean-Louis G, et al. Group visits in the management of diabetes and hypertension: effects on gylemic and blood pressure control. Curr Diab Rep 2009;9:238-42. - 43. Mallow JA. Diabetes group medical visits and biophysical outcomes of care in uninsured persons with diabetes [dissertation]. Morgantown (WV): West Virginia University; 2011. - 44. Pieber TR, Holler A, Siebenhofer A, et al. Evaluation of a structured teaching and treatment programme for type 2 diabetes in general practice in a rural area of Austria. Diabet Med 1995;12:349-54. - 45. Raballo M, Trevisan M, Trinetta A, et al. A study of patients' perceptions of diabetes care delivery and diabetes: Propositional analysis in people with type 1 and 2 diabetes managed by group or usual care. Diabetes Care 2012;35:242-7. ^{*}Reference numbering matches that in the full article.